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Abstract

The motion of an autonomous underwater vehicle (AUV) is controllable even with re-
duced control authority such as in the event of an actuator failure. In this paper we
describe a technique for synthesizing controls for underactuated AUV’s and show how
to use this technique to provide adaptation to changes in control authority. Our frame-
work is a motion control system architecture which includes both feedforward control as
well as feedback control. We confine ourselves to kinematic models and exploit model
nonlinearities to synthesize controls. Our results are illustrated for two examples, the
first a yaw maneuver of an AUV using only roll and pitch actuation, and the second a
“parking maneuver” for an AUV. Experimental results for the yaw maneuver example

are described.
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1 Introduction

Autonomous underwater vehicles (AUV’s) are expected to play an increasingly larger
role in underwater missions since they can be sent into ocean environments too risky
for manned vehicles and too deep for tethered vehicles. Critical to their success is
their capability for accurate and reliable autonomous motion control. In particular, an
AUV should be able to control its own motion, adapting both to external dynamical

disturbances as well as to configuration related changes such as the loss of an actuator.

Adaptation is a critical feature of an AUV since there is a great deal of uncertainty
associated with maneuvering underwater, particularly at great depths. In one respect
it is necessary for the AUV to adapt to bifurcations, i.e., to the onset of wave-induced
or self-induced oscillations, to avoid gross errors in motion. These oscillations are dy-
namical phenomena that have been studied in some detail [1]. Typically, adaptation in
this setting means gain parameter adaptation wherein control gains are reduced when

necessary to avoid exciting dynamical modes of the vehicle-plus-fluid medium system.

On the other hand, adaptation of an AUV to configuration related changes has not
been well understood. That is, in the event of a failure which reduces control authority of
the AUV, one would like the AUV to be able to maintain complete control of its motion
so that it can successfully complete its mission. In this paper we discuss a systematic

way for an AUV to adapt to changes in control authority.

Toward this end we address the control synthesis problem for an underactuated AUV,
i.e., an AUV with fewer control actuators than number of desired degrees of freedom.
For example, we study the three-dimensional attitude control problem for an AUV with
only two actuators, illustrating how to perform a yaw maneuver with only roll and pitch
actuators. Our objective is to provide a controller that permits an AUV to control its
motion with reduced control authority. A reduction in control authority might be the

result of a failure of an actuator or a deliberate decision to limit the number and choice



of actuators in use, e.g., for cost effectiveness.

Our strategy for control synthesis is based on our recent results in nonlinear construc-
tive controllability applied to AUV motion [2]. From a well-known theorem in nonlinear
control theory one can show whether or not an underactuated AUV is controllable, i.e.,
whether or not there ezists a control law to drive the AUV into any position and orien-
tation. Given that the underactuated AUV is controllable, the nonlinear constructive
controllability problem is then one of finding a control law that translates and orients
the AUV as desired. The fact that an underactuated AUV is controllable is a nonlinear
effect, and, thus, it is the nonlinearities in the system model that we exploit. Indeed,
a linearization of our underactuated AUV model will in general not be controllable

implying that control techniques based on linearization will not be useful.

In our solution of the nonlinear constructive controllability problem, we derive algo-
rithms that generate open-loop controls for AUV motion. Open-loop control is control in
the feedforward path of the control system. It is constructed to drive the AUV as desired
based on an understanding of how the AUV responds to certain types of control input.
In its direct approach to control, open-loop control can lead to improved performance
accuracy and reduced control effort. We refer to the use of open-loop control as strategic

planning and a set of open-loop controls for an AUV as a motion script or motion plan.

Reactive control or feedback control, on the other hand, is control based on sensory
feedback. A feedback control law converts a measured error in motion into a corrective
actuation signal. As such, feedback control provides robustness to disturbances. Tradi-
tionally, one would consider controlling an AUV with purely feedback control. However,
because of our ability to synthesize open-loop control for AUV motion, we propose a
motion control system architecture that combines both open-loop and feedback control
in an effort to realize the benefits of each. This architecture has the additional advantage

of including adaptation to changes in control authority.




We focus in this paper on the kinematics of the AUV as a first step towards intro-
ducing strategic planning and incorporating configurational adaptation into the control
strategy. Thus, the control inputs we specify are to be interpreted as rotational and
translational velocities. The next step will then be to reintroduce the AUV dynamics

into the overall control system design.

In Section 2 we describe our model for the AUV. In Section 3 we define control
authority and controllability. The condition for determining controllability is described
and illustrated for several choices of AUV control authority. Open-loop control synthesis
for underactuated AUV’s is presented in Section 4. Motion scripts are illustrated for
two examples: a yaw maneuver of an AUV using only roll and pitch actuation and
a “parking maneuver” for an AUV with original and reduced control authority. In
Section 5 we describe the proposed motion control architecture which includes strategic
planning, reactive control and adaptation to changes in control authority. In Section 6
we describe an experiment that was run to test our controls on an AUV in a neutral

buoyancy tank at the University of Maryland. We give final remarks in Section 7.

2 Model

In this section we describe a kinematic model of the motion of an AUV. That is, we
describe the position and orientation of the AUV as a function of its translational and
rotational velocities. To do so in a global way, we make use of the space of matrices
referred to as the Special Euclidean group of matrices SE(3). SE(3) is a matrix Lie

group consisting of matrices that describe rotations and translations in R3. Define

a A

b
SE@3) & { € R4 | A e R,
0i1

ATA=1, det(A) =1, b € R%}.
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Figure 1: Autonomous Underwater Vehicle.

Then A is an orthogonal (rotation) matrix and b is a vector. Suppose that X is an

element of SE(3) and y € R3. Then X maps y into Ay + b by multiplication:

HE

The new vector Ay + b can be interpreted as y rotated by .4 and translated by b.

Alb
011

Ay +b
1

An element from SF(3) can similarly be used to describe the position and orientation
of an AUV at time t. We identify the position and orientation of the AUV at time ¢ with
that element in SFE(3) which maps at time ¢ each of the three axes of an orthonormal
frame fixed on the AUV into the corresponding axes of an inertial frame. For example,
consider an AUV as in Figure 1 with (by, bz, bs) an orthonormal frame fixed on the

vehicle and (rq,r2,rg) an inertial frame. Then X (t) € SE(3), defined so that

determines the orientation and position of the AUV at time t. Because every position
and orientation of the AUV corresponds to a distinct element in SE(3), SE(3) provides
a global representation of the configuration space of the AUV. This is not true for local

parametrizations such as those based on Euler angles or quaternions.

To describe the velocity of the AUV we define se(3), the Lie algebra associated to

SE(3). se(3) is a vector space with matrix elements that describe infinitesimal rotations



and translations in R3. Define

(1>

se(3)
0 0

A+AT =0, z € R}

{(A IE) €§R4X4|A€§R3X3,

Then A is a skew symmetric matrix and z is a vector. The vector space se(3) becomes
a Lie algebra by defining a binary operation referred to as the Lie bracket, denoted by
[-,-], and defined by

[-,-] : se(3) x se(3) — se(3)
[A4,B] — AB— BA.

This operation is also known as the commutator of matrices. If [A, Bj= AB— BA =0

for some A, B € se(3), we say that A and B commute.

Now let © = (£21,9,,Q3)7 be the angular velocity of the vehicle and let v =
(v1,v9,v3)T be the vehicle translational velocity, all with respect to (by,bz,bsg). To
associate angular and translational velocity with an element in se(3) we define the fol-

lowing basis {4y, ..., As} for se(3):

(000 010 [0 0 01
00 —1/0 00 0]0
Al"‘ 7A4_ )
01 010 00 00
(00 00| (0000
[0 0 1]0] [0 0 0/0]
0 0 00 00 0|1
A2: aAS_ ; (1)
~1 0 0/0 00 0[0
| 0 0 00| (0000
[0 -1 00 [0 0 0]0]
1 0 00 00 0]0
A3_ aAG_
0 0 0|0 00 0|1
(0 0 00| (0000




A1, As, Az correspond to infinitesimal rotations about the by, b, bs axes, i.e., in the roll,
pitch and yaw directions, respectively. A4, As, Ag correspond to infinitesimal translations
along the by, ba, bs axes, respectively. We can then express the velocity of the AUV as
(32, Qu(t)A; + 8, vi_3(t)A;) which is an element in se(3). Further, X (t) satisfies
) 3 6
X =X_Qu(t)A: + ;’Ui_;g(t)Ai). (2)

=1
Equation (2) provides a global kinematic model of the motion of the AUV by describing
X, the orientation and postion of the vehicle, as a function of the vehicle velocities {2

and v.

As described in Section 1 above, we confine ourselves in this paper to a kinematic
model of the AUV motion. Accordingly, we specify control inputs that can be interpreted

as rotational and translational velocities. Let us identify

) Q0), i=1,23 3)
€U; =
Vi—3 (t), 1=4,5,6

where ¢ is assumed to be a small parameter and each eu,(t), i =1,...,6, is interpreted
as a small-amplitude control input. Further, suppose that we can directly actuate only

m < 6 of these control inputs, i.e., with appropriate reordering of indices if necessary,

Ums1 = ... = ug = 0. Then the kinematic model of (2) can be rewritten as the control
system
X =eXU, U(t) = uw(t)A;, m <86, (4)
i=1

where X (t) € SE(3) and U(t) € se(3).

The formulation (4) is actually more general than as derived since the matrices
{Ai, ..., Ag} can be chosen to be any basis for se(3) with the coefficients u, (), ..., ug(t)
interpreted accordingly. For example, consider an AUV with two actuators. Suppose
that one actuator controls angular velocity (denoted by eu;) about an axis that lies
in the by-by planc. For example, suppose that it controls angular velocity about the

b; and bg axes equally. Suppose the other actuator controls angular and translational




velocity about the bg axis, simultaneously. This second actuator provides a screw-like
velocity that we denote by eu,. Define By = A; + A3 and By = Ay + A5 where Ay, Ag, A
are define by (1). Then X (¢) satisfies

X = eX(u1 By + u2By). (5)

In this paper when we refer to A;, i =1,...,6, we will mean as defined by (1). We will

consider this to be the standard basis for se(3).

Equation (4) is referred to as a drift-free, left-invariant system on the matrix Lie
group SE(3). By drift-free it is meant that if the control is set equal to zero, i.e., u(t) =
(u1(t), ..., ug(t)) = 0, then the rate of change of the state is zero, i.e., X = 0. A system
with drift would have a nonzero rate of change of state under these conditions. The
fact that the AUV kinematics can be described by a drift-free system is advantageous
for our purposes because it simplifies the determination of system controllability (see

Section 3).

Left-invariance refers to the fact that the kinematic description (4) is independent
of where we place the body-fixed orthonormal frame (by,b2,bs) and inertial frame
(r1,r2,r3). This implies that if we know the solution of (4) with initial condition
X(0) = I € SE(3) to be X;(t), then we know the solution of (4) with any initial
condition X (0) = Xj as X (t) = XoX:(2t).

3 Control Authority and Controllability

Control authority of the AUV is defined to be the m available control inputs, i.e.,
the set {A1,...,An} C se(3) such that U(t) = X%, ui(t)A; and ui(t),...,un(t) can
be actuated independently. For example, control authority represented by the set
{A1, Ay, A3, A4} is interpreted to mean that the AUV is equipped with independent
actuators for roll, pitch, yaw and translation along the by axis. If the yaw actua-

tor is unavailable in this example then the control authority is represented by the set




{A17A27A4}-

Assuming that we are interested in controlling the full six dimensions of AUV motion,
i.e., position and orientation in R2, then an AUV with control authority comprised of
m < 6 independent control inputs is an underactuated AUV. In this underactuated
condition, it is often still possible to maintain complete control of the AUV motion. To
demonstrate this we consider the problem of specifying controls for the AUV modelled
by (4) that drive the AUV from its initial orientation and position to some final desired
orientation and position in a given fixed amount of time. We state this problem formally

as

(P) Given an initial position and orientation X; € SE(3), a final position and orien-
tation X; € SE(3) and a time t; > 0, find controls u(t) = (ui(t),...,um(t)),
t € [0,ty], such that X (0) = X; and X (t5) = Xj.

System (4) is said to be controllable if there exists a solution to (P), i.e., if for
the given control authority the AUV can be translated and rotated into any desired
position and orientation. There are well-known results from nonlinear systems theory

for determining controllability of systems of the form (4) on Lie groups [3, 4]. Let

¢ = {C|C=[Ck[Crr,[ -+, [C1,Co] Il

Cie{A,...,An}, i =0,...,k}. (6)

Then
System (4) is controllable <= span(C) = se(3). (7)
The set C consists of the matrices {A1, ..., An} as well as matrices of the form [A4;, 4;],

(4, [4,, Akl], [Ai, [Aj, [Ak, All]], etc. We refer to span(C) as the Lie algebra generated
by {Ai,...,An}. The controllability condition (7) then implies that the AUV is con-
trollable if and only if the Lie algebra generated by {Ai,...,An} is se(3), the six-

dimensional space of infinitesimal rotations and translations.




Intuitively, the controllability condition tells us that an AUV can be controlled not
only in directions that are directly actuated but also in directions corresponding to the
Lie brackets of directly actuated directions. The fact that an underactuated AUV is
controllable results from the fact that rotations do not commute with one another and
rotations do not commute with translations, i.e., Lie brackets of the associated matrices

produce new nonzero matrices. This is best illustrated by example.

Example (a). First consider an AUV with control authority {A;, A, A3, A4}, i.e., with
actuators for roll, pitch, yaw and translation along the by axis. Performing the matrix

multiplication in the Lie bracket operation one finds that
[A3, Ag] = A5,  [Ag, As] = Ae.

Thus, {Ay,...,As} are all contained in C and so span(C) = span{A4,,..., A} = se(3).
By (7) the AUV is controllable. The bracket [A3, As] = A5 expresses the fact that yaw
rotation (motion in the Az direction) and translation along the by axis (motion in the
Ay direction) do not commute. Specifically, if the AUV first translates and then yaws it
does not end up in the same place as it would have had it first yawed and then translated.
This is shown in an overhead view of the AUV in Figure 2(a). Further, as shown in
Figure 2(b) if the AUV yaws in the clockwise direction, translates in the positive by
direction, yaws in the counterclockwise direction and then translates in the negative by
direction, the AUV will experience a net translation along the bg axis (the As direction).
A similar interpretation can be made for the bracket [A4, As] = Ag which expresses the
fact that pitch and translation do not commute and can be used to produce net vertical
translation (motion in the Ag direction). We refer to the AUV in this example as a
single-bracket system since only single iterations of Lie bracketing are needed to satisfy

the controllability condition.

Example (b). Now consider an AUV with control authority {A;, A2, As}. This is the

AUV of Example (a) without a yaw actuator (perhaps due to an actuator failure). In

10
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Figure 2: Overhead View of AUV Performing Yaws and Translations.

this case we find that
[A1, Ag] = A3,  [[A1, A2), Ag]l = A5, [A4, As] = As.

Thus, A;, ..., Ag are all contained in C. So span(C) = se(3) and the AUV is controllable.
The bracket [A;, A3] = A3 expresses the fact that roll (motion in the A; direction) and
pitch (motion in the A, direction) do not commute. Specifically, if the AUV rolls and
then pitches it is not in the same orientation as it would have been had it first pitched
then rolled. Further, if the AUV rolls in the positive direction, pitches in the positive
direction, rolls in the negative direction and then pitches in the negative direction, the
AUV will experience a net yaw motion (motion in the As direction). We refer to the
AUV in this example as a double-bracket system since we needed to use a bracket of

brackets (double bracket) to satisfy the controllability condition.

Example (c). The AUV with two actuators described by (5) is controllable since
(By, Ba, |By, By, [B1, [Bi, B2, [Ba, [ B1, Bsl), [Bi, [Bi, [B1, Ba]]]) span se(3). In this case
the AUV is a triple-bracket system.

The controllability condition for linear systems involves checking the rank of a matrix
referred to as the controllability Grammian. If the linear system is controllable a control
law can be constructed using the controllability Grammian. For nonlinear systems such
as the AUV described by system (4), the nonlinear controllability condition (7) does not
lead immediately to an explicit procedure for constructing controls. Finding the control

law that solves the problem (P) is referred to as the constructive controllability problem.

11



This problem is addressed in the next section.

4 Control Synthesis

The computation of open-loop controls for nonlinear constructive controllability has been
explored carefully in the context of robotics and more abstract problems {2, 5, 6, 7, 8, 9,
10, 11]. In this setting, the use of periodic controls (outputs of coupled oscillators) has
played an important role. In this paper we also use periodically time-varying controls,
i.e., we let ui(t), e = 1,...,m, be periodic in ¢ of period T. In particular, we present

motion scripts based on small-amplitude, sinusoidal control inputs.

Part of the motivation for using these controls comes from noting that sinusoidal
controls that are out of phase will generate motion in single Lie bracket directions. For
instance, consider the AUV of Example (a) above and suppose that u3(t) = cost and
u4(t) = sint. Then, the AUV will be continuously performing a motion roughly like that
illustrated in Figure 2(b) and will experience a net translation along the ba axis. Small-
amplitude, low-frequency sinusoidal controls are also justified from a practical point of
view. Using these small, gentle control inputs, we can avoid both exciting vibrational
modes of the AUV and making large off-course excursions in the vehicle’s orientation

and position.

Averaging theory is the main analysis tool we use to derive a systematic means
of synthesizing controls. The details of our work on averaging for a class of nonlinear
systems similar to the AUV described by (4) can be found in [2]. As applied to the AUV
problem, the basic idea is to find an average approximation X (t) to X (t) such that the
“distance” between X (t) and X (t) is “small” on a sufficiently long time interval. The
formulas for X () are revealing. In particular, they expose the behavior of the AUV
in terms of elements of C, i.e., in terms of the control authority and the associated Lie

bracket directions.

12



From the average formulas we have derived algorithms for open-loop control syn-
thesis. If the AUV is controllable, given a specification of control authority and X;, X;
and tf, the algorithms produce small (¢) amplitude sinusoidal controls that drive the
AUV such that X(t;) is close to Xy with accuracy of order ¢?. Here, ¢ is an integer
that can be no smaller than one more than the number of bracket iterations used to
satisfy the controllability condition (e.g., ¢ > 2 for a single-bracket system and ¢ > 3
for a double-bracket system). The controls are synthesized by driving X (¢) exactly and
using the averaging results to ensure that X (¢) will stay close to X (t). The fact that the
algorithms synthesize controls as a function of a simple specification of control authority
is central to our scheme for adaptation to changes in control authority described in the

next section.

In what follows we present the motion scripts generated by our algorithms for the
control authority specified in Examples (a) and (b). We illustrate these motion scripts
for two example maneuvers, one a yaw maneuver using only roll and pitch actuation

and the second a “parking maneuver”. The details of the algorithms can be found in

[2].

While (4) has well-defined, global-in-time solutions for all piecewise continuous con-
trols, in general there are no simple global representations of these solutions to (4).
However, there are representations by products of exponentials [12] or exponentials of
sums [13] that are valid locally in time. For example, according to Wei and Norman [12]

the solution to (4) with X (0) = I can be expressed as

X(t) = en®agn®az .. 1604

for |t| < to, some tg > 0. ¥(t) = (71(),...,7(t))T € R™ is the solution to the ordinary

13




differential equation

Y1 secy,cosys —secysinyy 0 0 0 O Uy
Yo sin y3 cOoS Y3 0O 0 0 O Ug
Y3 _| - tanyscosys tan-yssin-vys 1 000 Us (8)
Ya 0 —Y6 v 1 0 0 (N
Vs Y6 0 —v4 01 0 us
R —s V4 0 00 1 || us |

where the unavailable control inputs are set to zero. The parameters 7;, 72, 3 can be
interpreted as Euler angles and describe the orientation of the vehicle. The parameters

V4, Vs, Y6 Parametrize the position of the vehicle.

Due to the left invariance of (4) we can, without loss of generality, assume that
X(0) = X;=1I. Let vf = (4, ---,7s)" be the local representation of the desired final
position and orientation of the AUV defined by

X; = eitietatz. . glefe,

Here we have assumed that X is sufficiently close to the identity, i.e., we consider a
small AUV maneuver. To perform a large AUV maneuver, we would choose intermediate
target points between X; and X; and use the motion scripts below repeatedly to meet

each intermediate target point successively.
Motion Script for Example (a)

Assume that Xy, t; and € are given and X is close enough to the identity I such
that vf = O(e), i.e., vy has magnitude of order e. The motion script for the AUV
with control authority {A;, A2, As, A4} of Example (a) is given below. These controls
drive the AUV from X; = I to X; with O(¢?) accuracy. To begin we choose an integer

M > 1/7e and compute the period, frequency and amplitudes of our control inputs as

b w=2

T=—o" _
M +3/2 T

14
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Let t, =L, t, =11+ MT, t3 = to + &, t4 = ty = t3 + . The controls are then defined

as follows:

€Uy (t) =
€Uo (t) = 4
eus(t) = <
euq(t) =

aew sin(w(t — t1))

0

%fth sin(w(t — t3))

0

aswsin(w(t — t1))

0

$vpawsin(w(t — t3))

oW sinwt

2ys4wsin(w(t — t3))

In this motion plan, sinusoids are used out of phase in 1-1 resonance to achieve

motion in the single Lie bracket directions. Given a fixed t¢, the choice of M determines

the frequency of the sinusoids. If there are practical limitations on the frequencies that

can be used, M can be chosen accordingly. The amplitudes as, a3, a4 have been chosen

to minimize a measure of control energy. However, other practical considerations, such

as exceeding minimum actuator signal levels and avoiding actuator saturation levels,

can be accounted for in the choice of the amplitudes.

Motion Script for Example (b)

Assume that Xy, ¢ty and € are given and Xy is close enough to the identity I such

that v = O(e?). The motion script for the AUV with control authority {A;, As, A4}

of Example (b) is given below. These controls drive the AUV from X; = I to X; with

15




O(e3) accuracy. To begin we choose an integer M > 1/we and compute the period,

frequency and amplitudes of our control inputs as

_ tf N 27
C3M A4 +1/27 T T
1/2
e ()" e (L) e
2 6m M ’ pam M ’ pLpemM’
1/4
o = (MG Vs __ e
2 w2 M2 oo M’ oM

Letti =L, to =t + MT, ts = to + L, ty = t5+ T, &5 = t4 + MT, t6 = t5 + L,

follows: )

p1w sin wi
0
eur(t) = ¢ oqwsin(w(t — t7))

0

v wsin(w(t —tg))
2pow sin wi
2paw cos(2w(t — t1))
2pow cos(w(t — t2))
—2pow sin(w(t — t3))

eus(t) = <
—2paw cos(2w(t — t4))
—2paw cos(w(t — ts))
ag sin(w(t — tg))
{ Lypwsin(w(t — tg))
' paw sin wi
0

eus(t) = ¢ oywsin(w(t — t7))

0

%7f4w sin(w(t — tg))

16

%, tg =1ty + MT, tg =tg + %, tio =19 + % The controls are then defined as

(10)

tg <t <ty




In this motion plan, sinusoids are used in 1-1 resonance to achieve motion in the
single Lie brackets directions and in 1-2 resonance to achieve motion in the double Lie
bracket direction. Choices of frequency and amplitudes can be made to meet practical

considerations as discussed above for Example (a).
Yaw Maneuver Example

Consider an AUV with control authority {A;, As, A4}, i.e., with actuators for roll,
pitch and translation along b; as in Example (b). Suppose the AUV is to perform a
pure yaw maneuver. In local coordinates this implies that v;, =0, ¢ = 1,2,4,5,6, and

vt # 0. For these values, according to the motion plan for Example (b)

ay = \/|7gsl/mM,  on = —ag sgn(vy,)

and ay = p; = pa = ps = 0. So uy(t) = 0 for this maneuver, i.e., we use only roll and
pitch to get a net yaw motion. Also, u; and us are only nonzero during the time interval
[ts, tg). That is the total time required for the maneuver is ty — tg = (M + 1)T. So we

can compute

ty 2T
T = = —.
M+ YT T
The controls reduce to
0 0<t<T=g
eur(t) = { oqwsin(w(t—s1)) s1 <t<s1+MT =3,

0 82St§82+%=tf
euz(t) = agsin(wt) 0<t <ty (11)

One can show further, since yaw motion is motion in a single bracket direction, given

that 7, = O(e) these controls will achieve the yaw motion with O(€?) accuracy.

For numerical illustration, let € = 0.1, ¢, = 0.2 and ¢; = 22. Choose M = 10, then
T =2, w=m, —o; = ay = 0.08. Figure 3 shows plots of the active controls eu; and euy
as a function of time. Figure 4 shows plots of a simulation of the response of the local

parameters y(t) as a function of time. The simulation was produced using MATLAB.
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Figure 3: Control Input Signals for Yaw Maneuver.

The horizontal lines of Figure 4 represent the desired final parameter values ;. From

Figure 4 it can be observed that the yaw motion is achieved with O(e?) accuracy.
Parking Maneuver Example

Consider an AUV with control authority {A4;, A, A3, A4}, i.e., with actuators for roll,
pitch, yaw and translation along by as in Example (a). Suppose the AUV is to perform
a translation in the Aj direction, i.e., a sideways motion or a “parking maneuver”. In
local coordinates this implies that v¢, = 0, i = 1,2,3,4,6, and v, # 0. For these
values, according to the motion plan for Example (a), u1(t) = u2(t) = 0 throughout and

all controls are zero during the time interval [t3,¢4]. Thus, we can compute

_ tf w_27l’
C M4+1 T

T
and use the controls defined during the time interval [0, ¢3].

For numerical illustration, let € = 0.05, vf, = 0.05 and ¢; = 16. Choose M = 7, then
T=2 w=m, —as=ay = 0.048. Figure 5 shows the two active controls eus and eu, as
a function of time. Figure 6 shows a simulation of the response of the AUV in terms of
local parameters with the horizontal lines indicating the desired final parameters values.

It is clear that the vehicle has been translated with O(e?) = O(0.0025) accuracy. It is
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Figure 5: Control Input Signals for Park Maneuver with Example (a) Control Authority.

also interesting to note that the controls for this maneuver are of the same form as for
the yaw maneuver. This is appropriate since in both cases the vehicle is being driven in

a single Lie bracket direction.

Next we consider the same parking maneuver, but we assume that the control au-
thority of the AUV has been reduced to {A;, Az, A4} as in Example (b). In this case the
desired parking maneuver corresponds to motion in a double-bracket direction. Plugging
~; for this maneuver in the motion plan for Example (b), we see that we need to use all

three available controls to park the AUV. During the time interval [te,t10] all controls
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Figure 6: AUV Park Maneuver with Example (a) Control Authority.

are zZero So we call compute

t 2
T=—I _ w= il

T oM 1) T

and use the controls defined during the time interval [0, tg] only.

For numerical illustration, let € = 0.14, ¢, = 0.05 and ¢; = 16. Choose M = 3, then
T = 2, w = 7. Figure 7 shows the three controls eu,, eus and euq, as a function of time.
Figure 8 shows a simulation of the response of the AUV in terms of local parameters.
The horizontal lines represent the desired final values of the parameters. It is clear,
from Figure 8, that at the end of the simulation, the vehicle has been moved as desired
with O(e®) = 0(0.0027) accuracy. This is the same order of accuracy as was achieved
with the controls in the previous section for the same desired motion during the same
amount of time. The fact that the motion is more difficult to achieve without the third
rotational control ug is reflected in the greater control effort used in this example (see

Figure 7) versus the previous example (see Figure 5).
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Figure 7: Control Input Signals for Park Maneuver with Example (b) Control Authority.

5 Motion Control Architecture with Adaptation

Figure 9 represents our proposed AUV motion control system architecture. This ar-
chitecture incorporates open-loop control, i.e., strategic planning, and feedback control
along with a second level of feedback to allow for adaptation to changes in control au-
thority. The strategic planner represents the algorithms that produce motion scripts
such as those described in Section 4 for motion with original or reduced control author-
~ ity. Level 1 reactive control is intended to complement the open-loop control by adding
(possibly intermittent) feedback to make the motion control more robust. Level 2 reac-
tive control is used for adaptation to changes in control authority such as an actuator

failure.

As an example of how open-loop and feedback control could be used together, con-
sider the problem of driving the AUV from X; to X; where the motion from X; to X;
is relatively large. As discussed in Section 4, to use the motion scripts for a large ma-
neuver, we first choose intermediate target points X1,..., X, between X; and X;. Then
we apply the appropriate motion script to drive the AUV from X; to the first target

point X;. At this point we could then use feedback control to correct for disturbances
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Figure 8: AUV Park Maneuver with Example (b) Control Authority.
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Figure 9: AUV Control Architecture

to the motion control. For instance, based on measurements of the current position
and orientation or the AUV we could modify the selection of remaining target points.
Alternatively, we could apply corrective actuation according to a local feedback control
law to ensure that the AUV reaches X; independently of disturbances. After feedback
is used the AUV would then proceed to each successive target point again using the
open-loop controls of the motion script with feedback applied intermittently, i.e., after

each or every few target points.

Level 2 reactive control is activated when a change in control authority is sensed.
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This change in control authority could be an actuator failure or even an actuator coming
back on line. The sensed change is sent to the strategic planner, which based on the
new representation of control authority switches motion scripts. For example, suppose
the AUV originally has control authority {A;, Ay, As, A4} of Example (a). If the yaw
actuator fails and the failure is sensed, the Level 2 reactive controller tells the strategic
planner to switch from the motion script for Example(a) to the motion script for Example
(b). The change in open-loop control could be effected on the fly by turning off all active
controls withough affecting the current state of the AUV and then initiating the new

set of open-loop controls.

6 AUV Experiment

In this section we describe an experimental implementation of the yaw maneuver de-
scribed in Section 4 on an AUV built and operated in the Space Systems Laboratory
(SSL) at the University of Maryland. The SSL designs, builds and evaluates integrated
telerobotic systems, including free-flying vehicles and modular manipulators for space
operations such as space structure assembly and satellite servicing [14]. Testing is done
in the SSL’s Neutral Buoyancy Research Facility, a water tank 50 feet in diameter and

25 feet deep, located at the University of Maryland.

SSL’s Supplemental Camera and Maneuvering Platform (SCAMP), illustrated in
Figure 10, moves freely and carries a video camera on board [15]. SCAMP is a 28-inch
diameter icosahexahedron (26-sided) object weighing 167 pounds in air. About each
of its three axes, SCAMP has a pair of ducted fan propellers, shown in Figure 10. A
pair of propellers run in the same direction provides translation and run in opposing
directions provides rotation about its associated axis. There is an on-board, closed-
loop motor controller for each propeller that linearly converts an 8-bit (-128 to +127)
command sent to the motor into a propeller speed. All on-board processing is done

using a Motorola 68HC11 microcomputer. The Motorola 68HC11 communicates with
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Figure 10: Front View of SCAMP.

the control station by means of a message-based serial protocol developed at the SSL.
Data is transmitted over a fiber optic link. The control station consists of a MacIntosh
IIfx computer and two hand controllers (joysticks). One hand controller is used for
translation and the other for rotation. SCAMP also has a 7 lbs lead-weight pendulum
that is located below the center of SCAMP along the yaw axis. The pendulum remains
fixed with respect to the coordinate axes fixed on the vehicle unless it is actuated to
control pitch. But for the pendulum, video camera, and the internal electronics, SCAMP

is essentially a symmetric rigid body.

In the experiments described here, the hand controllers were bypassed. Instead
open-loop control signals were computed on the MacIntosh computer according to the
motion script for the yaw maneuver above and sent directly to the propeller motors.
The main objective of the experiments was to illustrate our motion scripts for an AUV
with reduced control authority. In particular, we assumed that the yaw propellers on

SCAMP were inactive and that a pure yaw maneuver was desired.

For our experiments we used the fact that due to the drag of the water, a constant

24



08f x
osf .
0.4f .

o2 -

SCAMP Angular Velocity, rad/sec

Z150 -100 50 0 50 100 150
8-bit Motor Command

Figure 11: Calibration Data for SCAMP.

propeller speed corresponds to a constant vehicle speed. As a result, a constant 8-bit
command sent to the motor corresponds to a constant vehicle speed. Calibration data to
determine the relationship between the 8-bit motor command units and vehicle angular
velocity is plotted in Figure 11. The data for the 8-bit commands of +127 and -128
was provided from previous testing. The other data points were obtained at the time of
the experiments described here. A constant 8-bit signal was sent to the yaw propellers
for a period of 60 seconds. Angular velocity was measured by counting the number and
direction of rotations during the 60 second period. For the purposes of the experiments
we assumed that vehicle angular velocity is linearly related to the 8-bit motor command
signal. Based on the data in Figure 11, we assumed a proportionality constant of 163

motor command units per rad/sec.

We note that there is a time delay for the vehicle speed to follow the motor command
related to the natural frequency of the vehicle. Because of the symmetry of the vehicle,
we assumed that this delay is the same for roll, pitch and yaw. The open-loop controls
for the yaw maneuver are sinusoidal roll and pitch control signals, and the net yaw

motion is a function of the phase difference between the sinusoids. For our experiments
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we used sinusoids with frequencies less than the natural frequency of the vehicle, and we
counted on the fact that equal time delays in all of the sinusoidal control signals should

not upset their phase relationships.

The controls used in the experiment are given by (11) with the roles of u; and u,

exchanged (for convenience) as follows:

eur(t) = oqwsinwt 0<t<t;

0 0<t<t
eus(t) = opwsin(w(t —t;)) 4 <t <t
0 tp<t<ts

with oy, as computed according to

Yis Vi3
173 = 3 12
M| 2T M (12)

We chose € = 0.4, |a;| = 0.4, |az| = 0.4, w = w/4 rad /s and M = 6.25. From this we can

o) = ‘

compute T = 8s,t; = 25, ty = 52’5, t3 = 58 5. Further, from (12) v¢, = oyen M = £,
Thus, we expected to see a net yaw rotation of 180 degrees within O(e?) accuracy or
within about +£10 degrees accuracy. e was chosen to be relatively large so that the
oscillations of the vehicle would be large enough to observe and the test would not be
too time consuming, i.e., ty = %3 relatively small. The fact that M was not chosen to
be an integer implies that there should be a small net rotation about the roll and pitch
axes at t = ty. However, the passive effect of the pendulum was expected to quickly

remove these rotations.

Several repetitions of this experiment were run in May and June 1994. Sensors were
not available to take velocity or position measurements during the experiments. How-
ever, many of the experiments were recorded on videotape. During these experiments
SCAMP was observed to make a net yaw rotation consistently as expected. Gentle os-
cillations about the roll and pitch axes were clearly visible throughout the experiments
with no significant final net roll or pitch rotation. When ajas > 0, SCAMP was ob-

served to rotate about the yaw axis in the counter clockwise direction (looking from
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above). When ajay < 0, SCAMP was observed to rotate about the yaw axis in the
clockwise direction (looking from above). The net yaw rotation was typically slightly

less than 180 degrees but within the accuracy of the predicted motion.

For one series of the experiments with o, < 0 (i.e., clockwise yaw motion) towards
the end of the experimentation, the net yaw rotation was not quite as high as expected
(closer to 90 degrees than 180 degrees). This may have been due to error in the approx-
imation of the motor command to velocity conversion or to asymmetry in the roll and
pitch propellers in this direction such that the phase difference between these signals
was affected. Additionally, there was some difficulty keeping SCAMP neutrally buoyant

throughout the test, but this did not seem to have an effect on the attitude motion.

7 Final Remarks

We have demonstrated that it is possible to control an AUV with reduced control au-
thority and have described a control synthesis technique for underactuated AUV’s. The
synthesis technique provides motion scripts, i.e., open-loop controls, to drive an AUV
as desired based on the available control authority. Two example motion scripts were
provided in full, one for an AUV with four control actuators and one for an AUV with
three control actuators. These motion scripts were illustrated for a yaw maneuver and

a parking maneuver.

Exploiting our ability to synthesize open-loop controls for an underactuated AUV,
we proposed a motion control architecture which incorporates strategic planning, reac-
tive control and adaptation to changes in control authority. The adaptation involves
changing motion scripts at run-time in response to system configuration changes. We
note that due to the discrete nature of the changes to which the adaptation responds,

we have deviated from what is typically considered adaptive control theory.

Our open-loop controls were tested on an AUV in a neutral buoyancy tank at the
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University of Maryland. The experiment demonstrated an AUV yaw maneuver using
only roll and pitch actuation. In particular, the experiment illustrated Lie bracket effects
through sinusoidal controls (in this case, roll and pitch propeller thrust reversals). The
experiment did not involve precision measurements; however, one could do so in future

experimentation.

The control synthesis and adaptation in this paper was based on a kinematic model
of an AUV. Future work will reintroduce the AUV dynamics into the control system

design.
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